Magneto-electro-mechanical size-dependent vibration analysis of three-layered nanobeam with initial curvature considering thickness stretching

author

  • Mohammad Arefi Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-51167, Iran.
Abstract:

Thickness stretching effect based on shear and normal deformation theory is used in this paper for magneto-electro-elastic vibration analysis of a three-layered curved nanobeam including a nano core and two piezo-magnetic layers. Size-dependency is included in derivation of governing equations of motion based Eringen's nonlocal elasticity theory. The initial curvature is accounted in calculation of external works due to pre-mechanical, electrical and magnetic loads. The analytical method is presented to study the effect of significant parameters on the vibration characteristics. The numerical results are presented in terms of initial electro-magneto-mechanical loads, size-dependency parameter, opening angle, two parameters of Pasternak's foundation and core thickness to face-sheet thickness ratio.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Vibration Analysis of Size-Dependent Piezoelectric Nanobeam Under Magneto-Electrical Field

The damping vibration characteristics of magneto-electro-viscoelastic (MEV) nanobeam resting on viscoelastic foundation based on nonlocal strain gradient elasticity theory (NSGT) is studied in this article. For this purpose, by considering the effects of Winkler-Pasternak, the viscoelastic medium consists of linear and viscous layers. with respect to the displacement field in accordance with th...

full text

Size-dependent Vibration and Instability of Magneto-electro-elastic Nano-scale Pipes Containing an Internal Flow with Slip Boundary Condition

Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure interaction (FSI) equations are derived by using non-classical constitutive relations for MEE material...

full text

Vibration Response of an Elastically Connected Double-Smart Nanobeam-System Based Nano-Electro-Mechanical Sensor

Nonlocal vibration of double-smart nanobeam-systems (DSNBSs) under a moving nanoparticle is investigated in the present study based on Timoshenko beam model. The  two  smart  nanobeams (SNB) are  coupled  by  an  enclosing  elastic  medium  which  is  simulated  by  Pasternak foundation. The energy method and Hamilton’s principle are used to establish the equations of motion. The detailed param...

full text

Size-dependent thermoelastic analysis of rotating nanodisks of variable thickness

This paper contains a strain gradient theory to capture size effects in rotating nanodisks of variable thickness under thermal and mechanical loading. Material properties of nanodisks have been taken homogeneous material. The strain gradient theory and the Hamilton’s principle are employed to derive the governing equations. Due to complexity of the governing differential equation and boundary c...

full text

Nonlocal Buckling and Vibration Analysis of Triple-Walled ZnO Piezoelectric Timoshenko Nano-beam Subjected to Magneto-Electro-Thermo-Mechanical Loadings

In this study, using the non-local elasticity theory, the buckling and vibration analysis of triple- walled ZnO piezoelectric Timoshenko beam on elastic Pasternak foundation is analytically investigated under magneto-electro-thermo-mechanical loadings. Using the Timoshenko beam free body diagram, the equilibrium equation of Timoshenko nano-beam model is obtained and solved by Navier’s method fo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  48- 61

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023